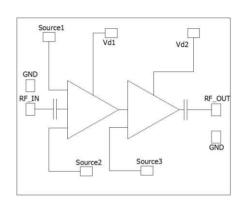


$7\sim$ 11GHz

key indicator

- \square Frequency range: 7 \sim 11GHz
- ☐ Gain: 23dB
- ☐ Noise figure: 1.1dB@9GHz typical value
- Output P_1 dB: 18.5dBm@9GHz typical value
- Chip size: 1.47mmx1.25mmx0.1mm

typical application


- ☐ Satellite communications
- ☐ Test measurement
- Optical fiber communication

Product Introduction

AY1644 works in 7 \sim 11GHz and is made of GaAs process. Under 29mA working current, it can provide 23dB gain, 18.5dBm output P-1dB, and the noise in the normal temperature band is lower than 1.1dB.

The chip uses an on-chip metallization process to ensure good grounding, and the back of the chip is metallized, which is suitable for eutectic sintering or conductive adhesive bonding processes.

Functional block diagram

Electrical performance ($T_A=25^{\circ}\text{C}$, $V_{d1}=V_{d2}=+5V$, $I_{d1}=28\text{mA}$, $I_{d2}=29\text{mA}^{[5]}$, $Z_0=50\Omega$,)

index	Minimum	Typical value	Max	unit
Frequency Range		7 ~ 11		GHz
Gain	-	22/23 [1]	-	dB
Input return loss	-	14	-	dB
Output return loss	-	14	-	dB
Noise figure @9GHz	-	1.2 / 1.1 [2]	-	dB
Output P ₋₁ dB	-	16 / 18.5 [3]	-	dBm
Gain flatness	-	1	-	dB

Absolute maximum rating

Maximum input power	+5dBm	Operating temperature	-55 ℃ ~ + 85 ℃
Channel temperature	150 ℃	Storage temperature	-65 °C ∼ + 150 °C

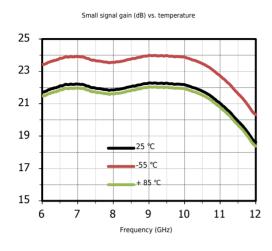
 $[1] LNA \ bias \ at \ Vd1=3V, ld1=36mA, \ \ Vd2=4V, ld2=54mA (Source \ 1/2/3 \ connect \ to \ GND \ are \ required). which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ GND) \ are \ required). Which \ gives \ the \ highest \ Gain \ (Source \ 1/2/3 \ connect \ to \ 1/2/3 \ conne$

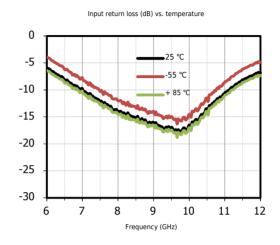
 $[2] LNA \ bias \ at \ Vd1=3V, Id1=27mA, \ \ Vd2=4V, Id2=28mA (Source\ 1\ connect\ to\ GND\ are\ required). which \ gives\ the\ lowest\ noise\ figure \ (Connect\ to\ GND\ are\ required). The property of the lowest\ to give the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the property of the lowest\ noise\ figure\ (Connect\ to\ GND\ are\ required). The property of the$

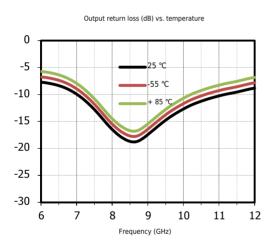
 $[3] LNA\ bias\ at\ Vd1=3V, Id1=15mA,\ \ Vd2=6V, Id2=58mA\ (Source\ 3\ connect\ to\ GND\ are\ required). which\ gives\ the\ highest\ PdB$

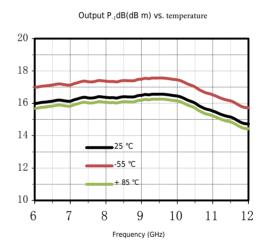
[4]LNA bias at Vd1=3V,Id1=15mA, Vd2=4V,Id2=28mA (None of Source pad connect to GND are required

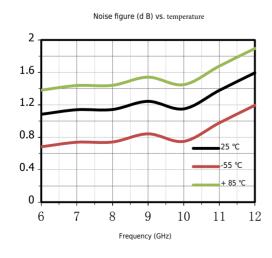
 $\label{eq:connect} \ensuremath{\texttt{LNA}} \ \ \text{bias at Vd1=5V,Id1=28mA}, \ \ \ \text{Vd2=5V,Id2=29mA} \ \ \ \ \ \ \ \text{Cource 1 connect to GND are required)}.$

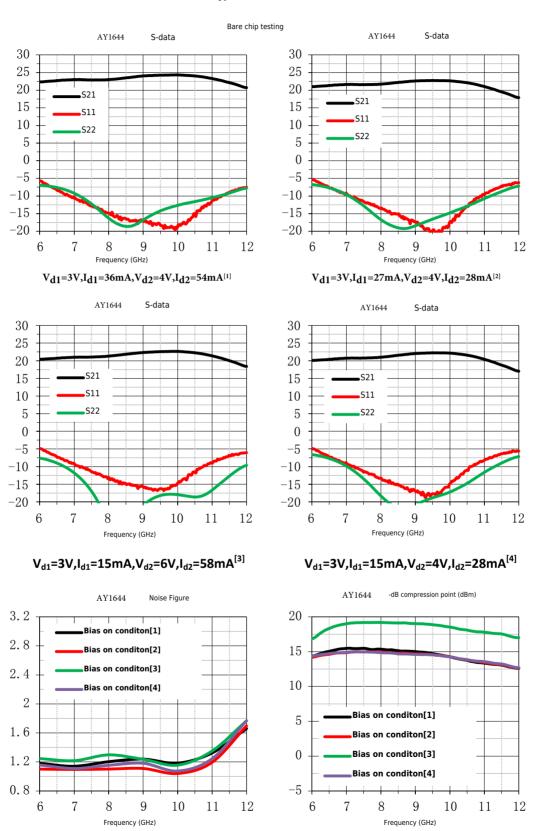

1




7∼11GHz

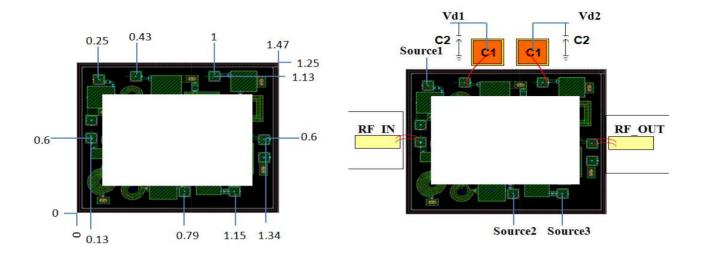

Typical test curve


 $(V_{d1} = 5V, I_{d1} = 28mA, V_{d2} = 5V, I_{d2} = 29mA^{[5]})$



7∼11GHz

Typical test curve



 $7\sim$ 11GHz

Shape and port size (mm)

Recommended assembly drawing

Assembly table

Pad	connect
V _{d1} , V _{d2}	Self-biased structure, both nodes must be connected to the power supply
Source 1/2/3	Adjustable node for adjusting noise/gain/P ₋₁ dB

Component list

C1	330pF	116RM331M050TT	ATC	-
C2	10nF	GRM155R71H103KA88D	MURATA	0402

Precautions

- 1. The chip is stored in a dry, nitrogen environment and used in an ultra-clean environment;
- 2. GaAs material is relatively brittle and cannot touch the surface of the chip, so you must be careful when using it;
- 3. Chips are sintered with conductive glue or alloy (the alloy temperature cannot exceed 300°C, and the time cannot exceed 30 seconds) to make it fully grounded;
- 4. The gap between the microwave port of the chip and the substrate should not exceed 0.05mm. Use Φ25μm double gold wire for bonding. The recommended length of gold wire is 250~400μm:
- gold wire for bonding. The recommended length of gold wire is $250{\sim}400\mu m$; 5. The chip is sensitive to static electricity, so pay attention to anti-static during storage and use.