AY1869

GaAs monolithic integrated CNC attenuator

 $DC{\sim}4GHz$

key indicator

- Frequency range: DC~4GHz
- Root mean square attenuation accuracy: 0.25dB
- Insertion loss: 0.7dB
- Positive voltage bias
- Chip size: 1.0mm×1.25mm×0.1mm

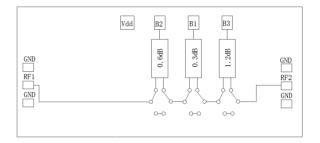
Product Introduction

AY1869 is a GaAs broadband 3-bit digital attenuator Chip,

frequency coverage DC~4GHz, insertion loss is less than 0.7dB, basic

attenuation is 0.3dB, 0.6dB, 1.2dB, total attenuation The reduction is

2.1dB. The chip uses +5/-5V logic to control the attenuation reduce.


The chip uses an on-chip metallization process to ensure a good

connection Ground, easy to use and convenient to use, the back of the chip is metallized, Suitable for eutectic sintering or conductive adhesive bonding process.

typical application

- Radar and electronic countermeasures
- RF/Microwave Circuit
- Military and aerospace
- test instrument
- Instrumentation

Functional block diagram

PMA

Electrical performance (T_A=25°C, V_D=+5V, Control level = -5/+5V, 50Ω system)

index	Minimum	Typical value	Max	unit
frequency		DC 4	-	GHz
Input standing wave ratio	-	1.15	-	:1
Output standing wave ratio	-	1.15	-	:1
Insertion loss	-	-0.7	-	dB
Phase fluctuation	-3.8	-	0.2	0
Attenuation accuracy	0.2	-	0.4	dB
Root mean square attenuation accuracy	-	0.25	-	dB

Truth table (0: -5V, 1: +5V)

attenuation	Bit1	Bit2	Bit3
Zero state	1	1	1
0.3dB	0	1	1
0.6dB	1	0	1
1.2dB	1	1	0
2.1dB	0	0	0

Control voltage

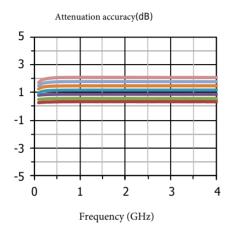
state	Bias condition
Low	-5.5~-4.5V
high	4.5~5.5V

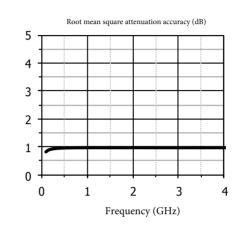
Bias voltage vs current

V _D	I D
5V	2mA

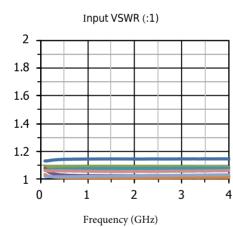
AY1869

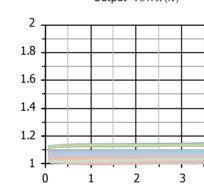
GaAs monolithic integrated CNC attenuator

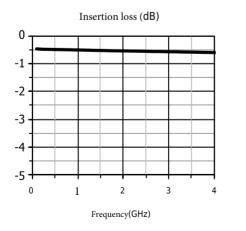

 $DC \sim \, 4GHz$

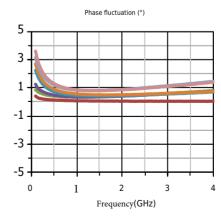

 Absolute maximum rating

 Maximum input power
 +23dBm
 Operating temperature
 -55 °C ~ + 85 °C

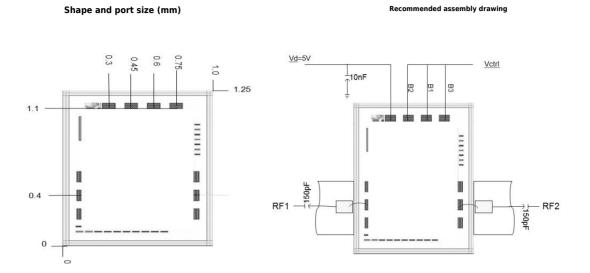

 Maximum input voltage
 +8V
 Storage temperature
 -65 °C ~ + 150 °C


Typical test curve


APMA



4



Output VSWR (:1)

AY1869

GaAs monolithic integrated CNC attenuator

 $DC \sim \, 4GHz$

Precautions

- 1. The chip is stored in a dry, nitrogen environment and used in an ultra-clean environment;
- GaAs material is relatively brittle and cannot touch the surface of the chip, so you must be careful when using it;
 Chips are sintered with conductive glue or alloy (the alloy temperature cannot exceed 300°C, and the time
- cannot exceed 30 seconds) to make it fully grounded;

4. The gap between the microwave port of the chip and the substrate should not exceed 0.05mm. Use Φ 25µm double gold wire for bonding. The recommended length of gold wire is 250 \sim 400µm;

5. The chip is sensitive to static electricity, so pay attention to anti-static during storage and use.